Graphs whose positive semi-definite matrices have nullity at most two

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on the Maximum Positive Semi-definite Nullity and the Cycle Matroid of Graphs∗

Let G = (V, E) be a graph with V = {1, 2, . . . , n}, in which we allow parallel edges but no loops, and let S+(G) be the set of all positive semi-definite n × n matrices A = [ai,j ] with ai,j = 0 if i = j and i and j are non-adjacent, ai,j = 0 if i = j and i and j are connected by exactly one edge, and ai,j ∈ R if i = j or i and j are connected by parallel edges. The maximum positive semi-defi...

متن کامل

On the maximum positive semi-definite nullity and the cycle matroid of graphs

Let G = (V, E) be a graph with V = {1, 2, . . . , n}, in which we allow parallel edges but no loops, and let S+(G) be the set of all positive semi-definite n × n matrices A = [ai,j ] with ai,j = 0 if i = j and i and j are non-adjacent, ai,j = 0 if i = j and i and j are connected by exactly one edge, and ai,j ∈ R if i = j or i and j are connected by parallel edges. The maximum positive semi-defi...

متن کامل

Product of three positive semi-definite matrices

In [2], the author showed that a square matrix with nonnegative determinant can always be written as the product of five or fewer positive semi-definite matrices. This is an extension to the result in [1] asserting that every matrix with positive determinant is the product of five or fewer positive definite matrices. Analogous to the analysis in [1], the author of [2] studied those matrices whi...

متن کامل

A New Determinant Inequality of Positive Semi-Definite Matrices

A new determinant inequality of positive semidefinite matrices is discovered and proved by us. This new inequality is useful for attacking and solving a variety of optimization problems arising from the design of wireless communication systems. I. A NEW DETERMINANT INEQUALITY The following notations are used throughout this article. The notations [·] and [·] stand for transpose and Hermitian tr...

متن کامل

Spanning trees whose stems have at most k leaves

Let T be a tree. A vertex of T with degree one is called a leaf, and the set of leaves of T is denoted by Leaf(T ). The subtree T − Leaf(T ) of T is called the stem of T and denoted by Stem(T ). A spanning tree with specified stem was first considered in [3]. A tree whose maximum degree at most k is called a k-tree. Similarly, a stem whose maximum degree at most k in it is called a k-stem, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00642-6